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AN ANALYSIS OF LIFT-OFF IN LAMINAR DIFFUSION FLAMES

INTRODUCTION

When the flow rate of a fuel jet is inereased, a jet diffusion flame attached to a burner rim
may lift off and become stabilized further downstream. Theories describing the stabilization of
such lifted flames in turbulent flow regimes have postulated that the flame at its base is fully
premixed and thus stabilized where the average axial velocity equals the mean burning velocity of
the premixture [1], [2]. Other theories suggest that turbulent diffusion flames may be described
as a collection of laminar flamelets, with liftoff occurring when a sufficient number of flamelets
near the jet exit become extinguished due to excessive strain [3], [4]. An extensive review of such
turbulent liftoff theories has been given by Pitts [5]. Laminar flames exhibit liftoff behavior as
well, and have a relatively simpler flame structure which may be studied to provide insight into
the basic mechanism responsible for flame lift. In the particular context of a fuel jet, lifted laminar
flames have been observed both experimentally and numerically [6], [7]. Theoretical predictions
of laminar flame liftoff heights have been obtained using cold jet theories in which the flame base
is predicted to occur along stoichiometric contours where the flow velocity balances the velocity
of a premixed flame base [8], [6], [9]. Wichman and Ramadan have used scaling arguments, and
detailed comparisons to numerical solutions of the same equations, to elucidate liftoff trends [10].
Experimental and numerical studies which may be relevant to the flame structure at the base of a
lifted flame include those of triple flames, often studied theoretically in the context of a stratified
premixture [11], as well as those describing diffusion flame evolution in mixing layers {12] and
phenomenological models of edge flames [13].

In the present study, the structure of a laminar diffusion flame associated with a fuel jet is ana-
lyzed to investigate flame lift. Here a Cartesian geometry is considered in which the two-dimensional
planar fuel jet is surrounded by a coflow of oxidant of the same velocity. Two approaches are under-
taken to describe such a flame. First, solutions are found by solving a reduced system numerically.
Next, an asymptotic solution is constructed. The formulation of the asymptotic model is based
on a flame sheet approximation, in a distinguished limit between large activation energy and large
Damkdhler number. Results of the two solution methods are compared and discussed. The effect
of flow velocity as well as other parameters of the combustion field on the flame is investigated.

FORMULATION

The jet diffusion flame is modeled by a two-dimensional slot geometry, as shown in Figure 1.
The half-width of the inner wall has been normalized to unity. In order to simulate an unconfined
flame, the half width of the (normalized) outer boundary L is taken to be large so that the outer
wall has a negligible effect on the combustion field. The chemical reaction is modeled as a global
one-step reaction of the form

vpF +vx0O — P (1)

where F,O and P represent the fuel, oxidant and product of the reaction, and v, vy are the fuel
and oxidant stoichiometric coefficients. An Arrhenius temperature dependence of the reaction has
been assumed.
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The resulting dimensionless, steady-state form of the governing equations reflecting conservation
of energy and mass balance of the reactants is

- _ Y- _ 2 6/T
M~ a3 3y Dp*YrYope (2)
0Yr 0Yp 0%Yp 2 Yes
m Oz — 922 - ayz -——Dp YoYFe (3)
2 2
dYo 3 0“Yo 0%*Yp _ —DP2YOYF€—9/T (4)
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Here it has been assumed that the velocity profile is one-dimensional,
v = (%,0,0) (5)

so that, from the continuity equation, the mass flux m = pu=constant. The momentum equation
is thus decoupled from the system and can be solved a posteriori to determine the small deviation
from the constant, time-independent ambient pressure. The equation of state is given by pT = 1.

In the above equations, lengths have been made dimensionless by the half width of the fuel
slot @, and velocity by the diffusional velocity up = A/pccpa. Here ¢, is an averaged constant
specific heat of the mixture, and ) is the thermal conductivity. A reference value p. = p.W/RoT,
is used to make the density dimensionless, where p. is the ambient pressure, W is an averaged
molecular weight of the mixture, and Ry is the gas constant. The temperature T has been scaled
by T, = (Q/c,)(Yrs/veWr), the fuel mass fraction by its initial value at the slot exit Yzs, and
the oxidant mass fraction has been scaled by Yrs(vxWx /vrWF). Here Q is the heat release, and
Wr and Wx are the fuel and oxidant molecular weights, respectively. Unity Lewis numbers have
been assumed, so that A pe,Dp = A/pcyDx = 1 where Dr and Dx are fuel and oxidant mass
diffusivities. Then the Damké&hler number D = vxYpjBp.a/Wrup, where B is a pre-exponential
factor of the reaction, and the scaled activation energy 6 = E /RoT..

The configuration is symmetric with respect to Y, so that it suffices to solve the system on the
half-space 0 < y < L. Boundary conditions reflecting symmetry at y = 0 and no-flux conditions at

y=L are
oT oY %

—_—= = =0. 6
dy dy Oy (6)
At z = 0, boundary conditions are
aYo _ oT _ aYF _
mYo—%—_ , mT—'g':;—mTJ, mYp——a?-—-m forO<y<1 (7)
oY, oT Y,
mY, ——a—xo—szoo, mT—a—szTog, mYF—FxE=O forl<y<1L, (8)

where T; and Tpg are the (dimensionless) temperatures of the fuel and oxidant at their sources,
respectively. The dimensionless oxidant source mass fraction is Xoo and the scaled fuel source mass
fraction is unity. Boundedness of solutions is required as £ — oo.

Before proceeding to finding solutions of the above equations, we note the existence of coupling
functions which satisfy a reaction-free form of the governing equations. In particular,

L(T—{-Yp)=L(T+Yo)=L(YF—Yo)=0 (9)
where 5 52 92
LEm'a—x—-a—zi—ayz (10)



Applying the boundary conditions of Eqs. 6-8 one thus finds solutions
1+T;+ Too(L - 1)

T+Yrp 7 +[1+ Ty - Too)S(z, ) (11)
T T X L-1
T+Yp 7+ OO+L 00)( ) +[Ts = Too - X00)S(z, y) (12)
14+ Xoo(1l—~1
Yr-Yp = - oz( ) + 14+ Xoo]S(z, ) (13)

where

o0

nr m — \/m? +4(n7r/L)2x) )

S =2 m<m+¢n7451TW> v (7 ) oo () e""( 2

in calculating S(z,y), we truncate the infinite series to 2 finite series over N modes. The above
solutions will prove useful in simplifying the analysis which follows.

NUMERICAL FORMULATION

To begin to explore laminar flame lift, we numerically solve a time-dependent form of the system
Egs. 2-8 and march to a steady state. The coupling functions Eqs. 11-12 may be used to express
Yr and Yy in terms of T, so that solving the system requires only the solution of the temperature

equation
or oT &°T 8T

dndl - 2 _ 2 -6/T
5 T "or T w2 " gy = PP YrYoe /T, (14)
subject to the boundary condition at g = 0
for0<y<1, mT—-QZ=mTJ; for1<y<I, mT—a—szTOO (15)
Oz Oz
and the condition, at z = Trmae,
oT
3= 0. (16)
Aty=0andy=1, v
or (17)
oy

Equation 14 is solved using a flux-corrected transport method. The liftoff height is calculated
numerically as the z—location where the temperature at some y first reaches a threshold tempera-
ture Tiison defined as
Tf - Tamb
5
Here the ambient temperature T, is defined as the maximum of the fuel and oxidant source
temperatures, Thp = max(Ty, Too); Ty is the flame temperature corresponding to complete com-
bustion. The flame height in the numerical calculations is defined to be the x-location where the
temperature reaches 2 maximum value at the centerline y = (. Convergence to a steady state was
determined primarily from the convergence of the flame liftoff height. Convergence tests were also
performed with respect to grid discretization and timestep size.

T]iftoﬂ' = Tamb + (18)




Numerical Solutions

Typical profiles resulting from the solution of Eqs. 14-17 are shown in Figure 2. Here T = Tpo = 0.1,

Xoo=1.0, D =4x107, and ¢ = 5.0. The liftoff height in Figure 2 is calculated to be zen = 2.85,
“and the flame height is z ;5 = 9.93.

In Figure 3, liftoff heights versus flow rate m are shown for several values of the Damk&hler
number D. Here Tj = Tpo = 0.1, Xpo = 1.0, and 6 = 5.0. In this figure, the liftoff height
exhibits a threshold phenomenon with respect to the flow rate parameter m. The flame appears to
remain attached until a sufficiently large value of m is reached; as m is increased beyond this value
the liftoff height increases at a faster-than-linear rate. Calculated flame heights are also shown in
Figure 3, and increase linearly with flow rate m.

In Figure 4, liftoff heights are shown for several values of m as a function of the Damkd&hler
number. Here, as in Figure 3, Ty = Tpp = 0.1, Xpo = 1.0, and 8 = 5.0. Figure 4 again indicates
the trend that as the Damkdhler number decreases, liftoff heights increase for a fixed value of m.
Furthermore, at a given value of D, liftoff heights are higher for larger values of m.

In Figure 5, temperature profiles are shown for three values of the flow rate m. Here Ty = Tpo = 0.1,
Xo00=1.0,D =4x107,6 = 5.0. In Figure 6, corresponding maps of the reaction rate p? DYrYpe=6/T
are shown. As m is increased, the flame evolves from a Burke-Schumann type attached flame, to
a lifted flame with triple flame structures at its base, to a higher, lifted, curved horizontal flame
front.

ASYMPTOTIC ANALYSIS

While the numerical results show us that even a simple model of a jet diffusion flame shows
flame lift, our numerical results do not show how flames are stabilized. In trying to understand
this, we first briefly analyze our results in terms of the simplest premixed stabilization theory,
which suggests that a flame is stabilized where the cold flow velocity equals a premixed burning
velocity. Chung and Lee [20], for example, consider similarly simplified governing equations but for
an axisymmetric jet geometry without a coflow. They obtain liftoff heights by determining where
the cold flow velocity contour representing an appropriate premixed burning velocity intersects the
stoichiometric concentration contour. We may attempt to apply this methodology to the present
problem in order to determine liftoff heights. Since we have assumed a one-dimensional velocity
field, the cold flow velocity in our model is constant everywhere in the flow field. Then the fully
premixed stabilization theory suggests that we should find a stabilized flame for only a single jet
velocity (the appropriate premixed burning velocity), with the liftoff height for this velocity being
indeterminate since the cold flow velocity is the same everywhere in the flow field. Contrary to
this, however, we find stabilized lifted flames for a continuum of jet velocities with an apparently
unique lift off height for each jet velocity. This suggests that the mechanism is more complicated.
In an attempt to gain further insight into the stabilization mechanism, we therefore turn to theory.

Specifically, we return to Eqgs. 2-4, 6-8 and seek an asymptotic solution in a distinguished limit
of large activation energy 6 and large Damkéhler number D. Variables are expanded as

T ~ To+ely+--- (19)
Y ~ Yro+€Yp +--- (20)
Yo ~ Yoo+ e€Yor+--- (21)

where € = TJ?/Q is an inverse activation energy parameter, with Ty the flame temperature. Solutions
corresponding to a near extinction regime in which fuel and oxidant are nearly completely consumed
at the flame will be sought. In such a limit chemical reaction is confined to a thin zone, to be




determined from the analysis. This “surface” of chemical reaction will be denoted by F(z,y) = 0.
To leading order, we assume that the flame separates a region of no oxidant (F' > 0) from a region
where there is no fuel (F < 0). The nonlinear chemical reaction terms in Eqs. 2-4 will thus be
replaced by conditions at the flame front determined by an appropriate analysis of the reaction
zone structure.

The governing equations to be solved at each order are then

oT  9°T 9T
m——

9z " 02 " oyp O (22)
Yy 0% 0%*Yy _
"oz T oz Oy? =0 (23)
o Vo 0,
"o " o2 g = (24)

which, again, are to be solved separately for F' > 0 and F < 0, subject to the boundary conditions
Egs. 6-8, and conditions at the flame front

Yro =0 for F <0, Yoo =0 for F'> 0. (25)
[To] = [Yro] = [Yoo] = 0 (26)
5= 5] =[5 )

] = —[¥rm]=~[Yoi] (28)
[%Z;l-l-’a—;;?] = 0, [%%.*.Qé%l} =0 (29)
Yrilp—o+ = SF Yo1|p—o- = Sx. (30)

Here jump conditions were obtained by integrating across the reaction zone [24]; brackets indicate
the jump in the enclosed quantity from F = 0~ to F = 0%, where the normal derivative and unit
normal vector are given by -

= \% and n= W
In Eq. 30, Sr and Sx quantify the small amount of fuel and oxidant that leak through the flame
as a result of departure from complete combustion at O(e). These quantities are determined from
solutions of the flame front inner structure equation, to be discussed below. The above conditions
are sufficient to determine T, Y, Y5 to O(e), as well as the flame position F(z,y)=0.

In general the above system is a free boundary problem which must be solved numerically.
However, the existence of the coupling functions Eqs. 11-13 allows analytical solutions to be written
for the leading order system. Regardless of the magnitude of the chemical reaction, if at the flame
sheet fuel and oxidant to leading order are completely consumed, the flame must be located where
Yr = Yo ~ 0. Then from Eq. 13, the flame position is given by

(31)

14+ Xoo(1 - L)
L

F(z,y) = + (14 X00)S(z,y) =0 (32)

Resulting flame shapes for a similar flow configuration have been discussed previously in [14].
The determination of the flame sheet now allows To, Yro, Yoo to be calculated everywhere in the




combustion field from the coupling relations Eqs. 11-13, by substituting in the expansions Egs. 19-
21 and setting Yrg = 0 in F < 0 and Yoo =0in F >0 appropriately. The adiabatic flame
temperature may also be calculated from Eq. 11 or 12,

T — Too + Xoo(1+ Ty)
14+ Xoo )

(33)

Thus by exploiting the use of coupling functions and assuming near complete combustion at
the flame, leading order solutions can be determined without recourse to a fully numerical solution
of the free boundary problem. Leading order conditions at the flame and the flame boundary itself
are also now known and can be summarized as

at F=0" and F = 0¥, To=Ty, Yro=0, Yoo =0 (34)

where F(z,y) and T are given by Egs. 32 and 33.

Proceeding to O(e), corrections to the leading order solution are sought in which departure from
complete combustion is possible. Introducing the expansions Eqgs.19-21 into the coupling function
relations Egs.11-13 gives

Ti4+Yr =0, T1+ Y01 =0, Yp, — Yo, =0 (35)
so that jump conditions (28) are satisfied automatically, and

at F=0", -T) = Yri =Yo1 =S¢ (36)
at F=0t, -7y = Yr = Yo, = Sy. (37)

Analysis of the reaction zone structure will provide Sr and Sy, the fuel and oxidant leakage
through the flame. More significantly in the present context, such an analysis will provide impor-
tant information regarding flame extinction.

Flame Front Inner Structure
To examine the reaction zone of the flame, coordinates are stretched at F — 0 and inner
expansions are introduced of the form

T~Ti+erp+--- (38)
Ye~eys+--- (39)
Yo~ ey, +--- (40)

Substituting these expansions into the governing equations and performing an appropriate coor-
dinate transformation, one finds that the equation for the temperature perturbation can be written
in a form first given by Lifian [15] as

0? -
3_4% = (¢" = ¢*) exp[~d5 *(¢ + 70)] (41)
where ( is a stretched coordinate normal to the flame surface. Boundary conditions are
94 94
- —_— = -1 — = ]. 2
as ( = —o0 ac , as ( = o0 ac 1 (42)



The conditions at the flame front Eq. 30 then follow from the matching relations

Sx =67 Iim_(6+¢) Sp=6 lim (6 0). (43)

(=40

The reactant leakage at the flame sheet thus depends on two parameters, v and ¢, which follow
from the coordinate transformation and are given by

o, om
on |,—o+ On |p=g—

= 44
o) oy 0
on |pm0-  On -

4De3e‘9/ Tf

» [0T0
g [ on ]
The parameter v is a ratio of the excess heat transported to one side of the flame to the total
heat generated at the flame. The limit of nearly complete combustion considered here implies that
—1 <y < 1. When |y| > 1 there is a heat flux from the ambient to the flame, and, correspondingly,
O(1) rather than O(¢) leakage of fuel or oxidant occurs through the reaction zone; such a limit will
not be discussed in this work. For the particular configuration considered here, we find

2(Ty—Too)+ (1 - Xoo)
(14 Xoo0)

The parameter § appearing in Eq. 41 is a reduced Damké&hler number, and thus a measure of the
completeness of the reaction. The limit § — co corresponds to the Burke-Schumann limit (D — o0)
of complete combustion, in which Sg = Sx = 0. Numerical solution of Eqgs. 41-42 indicates that,
for moderate values of §, the system Eqs. 41-42 has two physically relevant solutions; two different
quantities of the reactant leakage are possible. However, as  is decreased further, there exists a
critical value é., below which no solutions to Eqs. 41-42 exist. This value of 6, depends solely on
7. Lifidn [15] provides an approximation for 6. based on numerical computations as

(45)

(46)

8c = exp(LO)[(1 = |7]) = (1 = |7])* +0-26(1 — 7])® +0.055(1 — |7])¥] (47)

This implies that portions of the flame sheet where & < 6., or

{8To] 2 4BDe0/Ts

on T2, 48)

are extinguished.
From the leading order solutions derived from Eqs.11-13, the jump of the normal derivative of
the temperature across the reaction zone is given by

8T0]2 2 <8S>2 35)2
=0 -1 == ==
[an A+Xoo)" {{55) + <8y
Parenthetically, we note that this quantity is essentially the scalar dissipation rate found when a

mixture fraction formulation is used for the analysis. Evaluating this quantity we find that & varies
continuously along the flame sheet, attaining its minimum value at the flame base. Therefore, for

(49)

F=0




moderate values of A = 4¢3De~%Ts /T2, extinction of the flame near the flame base occurs below
T = z. where é(z.) = 4.

When a portion of the flame sheet is thus extinguished, modification of the leading order
solution is required. No longer are there two distinct regions of the flow field; in some regions fuel
and oxidant coexist even at leading order. Nonetheless, chemical reaction in these regions will be
negligible if the temperature is sufficiently low. To modify the preceding formulation to account
for such a region, the condition Eq. 25 may be relaxed to

at F=07, Ypo=0, at F=0% Ypo=0. (50)

where the flame sheet location F(z,y) = 0is now implied to exist only where § > §,. This relaxation
of the constraint Eq. 25 does not affect the validity of the preceding formulation if

at F=07, %% = 0O(¢), and at F=0", % = O(e). (51)
For D sufficiently large such that no portion of the flame sheet is extinguished, applying the
constraint Eq. 50 results in the solution obtained by applying Eq. 25, with Eq. 51 being trivially
satisfied. If the constraint 51 is not met, the formulation must be adjusted and one expects a
modification of the extinction criteria Eq. 48.

When solving the asymptotic system under the assumption 51, for moderate values of D one
must in general still resort to a fully numerical solution of the problem. In this case the region of
pure mixing at the base of the flame will likely modify the temperature gradients at the edge of
the flame, and thus the reduced Damké&hler number 4, and flame position, now defined as where
Yro =Yoo =0 and § > §.. However, in a first attempt to construct such solutions, we ignore the
effect the region of pure mixing has on the flame downstream, and thus assume the constraint Eq. 51
remains satisfied, and that the extinction criteria does not need to be modified. That is, conditions
at the flame are assumed to be unaffected by the frozen flow region; the effect of the extinguished
flame base on the flow field surrounding the flame will be taken into account. In making this
assumption, the parameters § and v, as well as the position of the flame sheet, restricted to where
§ > dc, remain as given in Egs. 45, 46, 32.

Since the solutions of the coupling functions Eqs.11-13 remain valid independent of the existence
or extinction of the flame sheet, any two of the variables T, Yr, and Yo may be expressed as a
function of the remaining one. Therefore, again it suffices to numerically solve for the temperature.

The governing equation is then
T 8°T &°T _

Boundary conditions at y = 0 and y=L are
or
—— =0 53
o (53)
while at z = 0,
for0<y<1, mT—g—T:mTJ; for1<y<L, mT—g—ijzmToo. (54)
x

The condition of boundedness as z — oo will be replaced by a condition on the truncated domain

that at z = 2,44, 5
T

a_x —_ .

(55)
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Conditions at the flame front, combining Egs. 34, 36, and 37, are finally given by

for6 > 4. and F=0", T=T;-eSr (56)
for 6 > 6. and F=0%, T =Ts—eSx (57)

where F(z,y), § and v remain as given in Egs. 32, 45, and 46.

Solution of the Asymptotic Model

The system Eqs. 52-57 requires solution of a steady-state elliptic equation. We have solved the
system by a simple five-point finite-difference scheme using Gauss-Seidel iteration. Discretization
errors are thus of O(dz?), where we have taken dy = dz. Near the flame boundary F(z,y) = 0,
the discretization scheme has been modified to account for situations in which the lame does not
exactly fall on grid points; errors near this boundary therefore may be slightly larger.

Typical solution contours are shown in Figure 7. Here T = Tpo = 0.1, Xpo = 1.0, m = 9.0,
€=0.072 (6 =5.0), A=1.0,L =10.0, and dz = dy = 0.02. The initial condition for the iteration
was taken from the Burke-Schumann solution for z > 2. and the initial (z = 0) condition for ¢ < z..
Profiles show a liftoff height of between one and two jet diameters, and are in fairly good qualitative
agreement with previous experimental and numerical studies [7]. Figure 7 is qualitatively similar to
Figure 2 obtained from the numerical solution. In the fully numerical solution, however, the flame
width, particularly at the base, appears broader than in Figure 7, in which the flame is assumed to
be confined to a surface. However, this broader lame width is consistent with a smaller effective
Damkdéhler number at the flame base. Note also that while liftoff heights are comparable in the
two figures, they are obtained for largely disparate values of A (or D.)

Figure 8 shows the effect of the mass flow rate on the flame shape. Here solutions of F(z, ) = 0,
0 > 6. are shown for several values of m, with Ty = Tpo = 0.1, Xoo = 2.0 L = 10.0, A = 2.0,
N =200. As m is increased, the liftoff height of the flame and the overall lame height increase.
The length of the flame (the distance from the lifted base to the flame tip) increases as well.
In Figure 9, flame shapes for the same parameters, but a smaller value of the ambient oxidant
concentration Xoo = 0.5, are shown. The liftoff and flame heights exhibit the same general trends
as in Figure 8. However, for the smaller values of Xoo, liftoff heights are shorter, flame lengths are
longer, and flame shapes are wider and more rounded.

In Figure 10, liftoff heights are shown versus m for several values of the parameter A. Here
Xoo = 1.0, with Ty = Top = 0.1, L = 10.0, and N = 200. As expected, liftoff heights decrease
as A increases, consistent with the Burke-Schumann limit A — oo in which flames are attached
for all values of m. In Figure 10 the flame height, which does not vary with A in the current
approximation, is also shown, and increases linearly with m. Flame height predictions from the
asymptotic model are compared with predictions from the numerical model in Figures 3 and 4.

The results from the asymptotic model show some qualitative agreement with the numerical
formulation results. Liftoff heights predicted using the asymptotically-derived extinction criteria
increase with jet exit velocity and decrease as the Damkdhler number is increased. However, we
see a linear, rather than faster-than-linear, increase in liftoff height with flow rate m. Also, for a
given value of A, liftoff height predictions from the numerical formulation are much higher than
those from the asymptotic model. This suggests that for a lifted flame, coupling between the frozen
flow region adjacent to the jet exit and the lifted flame base is significant. This is reasonable since
" heat loss at the flame edge due to the adjacent cold region would reduce the effective Damkéohler
number there, thus resulting in an underprediction of lift-off height. It is reasonable to think that
if coupling were included in the asymptotic model, the cold flow region near the jet would tend to
expedite extinction of the adjacent flame base, and thus a faster-than-linear dependence of liftoff




height on flow rate would result, along with better quantitative agreement. However, that the
asymptotic model cannot account for partial premixing effects also might be contributing to the
discrepancy. A modification of the analysis to account for some degree of premixing would likely
modify the extinction criteria Eq. 48 and also might lead to better agreement between the two
models. While lift-off height predictions of the two models are different, we note that the flame
heights predicted by both models show excellent agreement.

Because the flame heights predicted by the two models agree, and the general liftoff trend of
increasing height with increasing flow rate and decreasing Damkéhler number exists in both models,
we investigate further whether an extinction mechanism plays a role in laminar diffusion flame lift
and stabilization. In the asymptotic model, we obtain an extinction criterion that says a flame may

exist only for
2 2
A > 8.1+ Xoo)? (5’5—) + (951) .
0z ay F=0

Now the extinction parameter A involves primarily the Damké&hler number D and the activation
energy 0 (recall A = 4T}‘De“€/ T5 /6°.) We therefore investigate whether results from the numerical
formulation correlate with this asymptotically-derived extinction parameter. In Figure 11, Egs. 14-
17 were solved to obtain curves of liftoff heights versus m for identical values of A. Here the
values of D and § vary greatly between curves, but have been chosen such that in all curves they
combine so that A is fixed at the value A = 40.0. The results show that as the scaled activation
energy 8 is increased, the curves coalesce. Since the asymptotic model was derived in the limit
of large activation energy, one expects that as this parameter is increased, solutions should begin
to converge to a single solution. In the present results, this means that if results correlate with
respect to the parameter A, as it is held fixed and 6 is increased, the curves of lift-off height versus
m should begin to coalesce. Since Figure 11 shows that this coalescing appears to take place, our
results suggest that the parameter A derived from the asymptotic analysis is indeed a parameter
which characterizes flame lift.

(58)

DISCUSSION

Experiments indicate that for low jet velocities, diffusion flames are attached to the jet nozzle.
As the flow velocity is increased, such flames may lift off of the nozzle, so that the flame base is
located several jet diameters downstream. As the flow velocity is increased further, blow out occurs
and the flame is extinguished. Lee et al. [9] suggest that, depending on the fuel type, degree of
dilution, and the nozzle diameter, liftoff and blowout may both occur in the laminar regime, or
liftoff may occur in the laminar regime with blowout occurring after the transition to turbulence,
or liftoff and blowout may both occur only after a transition to turbulence. While there have been
many experimental and numerical studies of diffusion flame liftoff and blowout in turbulent regimes,
fewer studies exist which investigate laminar flame lift.

Experiments involving laminar propane jet diffusion flames by Lee et al. [9] suggest that liftoff
heights increase as the jet exit velocity of the propane is increased, at a faster-than-linear rate.
Flame heights increase linearly with an increase in the nozzle exit velocity, with the flame length
(distance from the lifted base to flame tip) approaching zero at blowout. When the fuel jet was
diluted, the liftoff height increased for a fixed value of the jet velocity. Lee and Chung [6] have
also investigated the effect of a low velocity oxidant coflow on a propane jet diffusion flame. Such
a coflow has a minimal effect on attached flame length, but results in a larger liftoff height. Liftoff
and blowout of the jet flame occur at lower fuel jet velocities when there is a coflow. Chung and
Lee [20], [6], in a cold jet analysis similar to that of Savas and Gollahalli (8], also have derived
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analytical expressions for liftoff heights, based on the assumption that a lifted flame at its base is
fully premixed. They postulate that a lifted flame is stabilized along the stoichiometric contour
where the (cold) flow velocity equals the appropriate burning velocity of the premixture. Lifted
laminar diffusion flames were also observed in experiments and numerical simulations by Xu et al.
[7]. They considered a circular jet geometry with an equal velocity oxidant coflow, using detailed
chemistry and complex transport models in their numerical simulation. Their results show a lifted
flame in which profiles of the temperature, fuel, and oxidant are qualitatively similar to the profiles
shown in Figures 2 and 6; liftoff height trends with respect to system parameters were not discussed.

The results from the numerical model show good qualitative agreement with such experimental
results. Liftoff height trends shown in Figure 3 are qualitatively the same as those described by
Lee et al. [9]. Profiles of temperature and fuel and oxidant mass fraction from the numerical
model are very comparable to those obtained by Xu et al. [7], and profiles from the asymptotic
model are comparable to such results as well. Both the current calculations and the calculations
of Xu et al. show the existence of “wings” of fuel outside of the core of the fuel jet at the flame
base, for example. In the current work these wings are more pronounced than in [7]; however, this
is likely attributable to the use of a planar jet as compared to the circular jet of Xu et al., and
to the exclusion of a radial velocity component. Flame heights predicted by the numerical and
asymptotic models show excellent agreement. That the numerical results appear to correlate with
the extinction parameter A from the asymptotic analysis suggests that diffusion flame extinction
plays a role in lifted flame stabilization.

It is useful to again analyze the results in light of the flame stabilization theory proposed by
Chung and Lee [6]. They hypothesize that flame stabilization occurs along the stoichiometric
contour where a cold flow velocity balances the stoichiometric burning velocity. In the present
model, we consider only a one-dimensional, axial flow velocity. As a result, the velocity of a cold
flow is constant everywhere in the flow field. A premixed flame base theory then suggests that
the model should result in a stabilized lifted flame only if the fuel and oxidant source velocities
are equal to an appropriate premixed burning velocity; in this case, the flame stabilization point
would be indeterminate, since at every point along the stoichiometric contour the velocity is the
same. However, in the calculations we obtain unique, stabilized lifted flames for multiple flow inlet
velocities. This suggests that a propagating, fully premixed flame base theory cannot fully explain
flame stabilization.

Our results also should be discussed with respect to partial premixing analyses, [16], [17], [18],
such as those of edge-flames and triple flames. In many analyses of this type of phenomena, the
domain is considered to be unbounded and an infinite region of partial premixing exists. In such
scenarios it seems reasonable to equate a flame stabilization point with the location at which a flow
velocity equals an appropriately calculated edge-flame, or partially premixed flame, propagation
velocity. In the work of Buckmaster [16] and in that of Miiller et al. [17], for example, expressions for
such partially premixed flame velocities are described in which the propagation velocity is dependent
on the scalar dissipation rate (which is inversely proportional to our effective Damk&hler number
6.) While our results affirm the importance of this parameter, they cannot be fully explained
by such a stabilization theory even when dependence of the flame speed on scalar dissipation
is taken into account. This is in part because, as the scalar dissipation rate decreases and the
effective Damkohler number increases towards infinity, such analyses reduce to a fully premixed
flame edge description. While such a result may be reasonable and appropriate in the respective
models considered, clearly in the jet flame model of the present work, the infinite Damkohler limit
corresponds to a non-propagating, attached Burke-Schumann flame. Thus while we cannot rule out
the possibility of partially premixed flame propagation contributing to lifted flame stabilization,
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such theories currently cannot provide a full description of the phenomena.
CONCLUSIONS

A numerical solution of a planar jet flame and a flame sheet model, in the limit of large activation
energy and large Damkohler number, were used to investigate liftoff of laminar diffusion flames.
The numerical results are qualitatively consistent with experiments [9] and more complex numerical
simulations [7]. Some agreement also exists between experiments and the asymptotic formulation
results; inclusion of coupling and heat loss effects between the frozen region below the flame base
and the flame itself in this model should produce improved agreement. Discrepancies between the
two models may be attributable to the need to modify the extinction condition to account for
flame edge effects. That the numerical model investigated here is very simple and yet still shows
good qualitative agreement with experiments suggests that at least some of the physical processes
responsible for flame lift are correctly accounted for in the model. In particular, we note that while
it is true that “real” jet flames have two (or three) dimensional velocity fields, it is interesting that
in our numerical work we are able to obtain lifted flames and triple flame structures with only a
one-dimensional velocity field. Thus while the inclusion of multidimensional effects would modify
our liftoff results, it is more significant that our work clearly shows that flow redirection at the
flame base is not necessary to obtain triple flame structures or flame stabilization: The simplicity
of our numerical model in this context produces insight which a more complicated numerical scheme
might be incapable of providing.

Local diffusion flame extinction is shown to be a plausible contributing mechanism of flame lift.
A simple description of flame stabilization occurring where the flow velocity balances a premixed
burning velocity is found to be inadequate. However, the possibility of some degree of premixed
burning affecting the flame structure and stabilization is not excluded; rather, it is shown that such
burning does not appear to be the sole controlling mechanism of flame lift.

In turbulent flames, Kaplan et al. [19] have used detailed numerical simulations of the full
Navier-Stokes equations to investigate flame lift. Their results corroborate parts of both the flame
extinction and premixedness theories, in a turbulent flame context. While a turbulent flow field may
significantly alter the dynamics of flame stabilization, a full solution of the Navier-Stokes equations
in a laminar regime in which buoyancy and a multidimensional velocity field are accounted for also
could somewhat modify the flame liftoff results obtained here.

12



ACKNOWLEDGEMENTS

This work was performed while S. Cheatham held a National Research Council - Naval Research
Laboratory Research Associateship.

References

[1] Vanquickenborne, L. and van Tiggelen, A., Combustion and Flame 10:59-69 (1966).
[2] Kalghatgi, G.T., Combustion Science and Technology 41:17-29 (1984).
[

]
]
3] Peters, N., Progress in Energy and Combustion Sciences 10:319-339 (1984).
4] Peters, N. and Williams, F.A., AJAA 21, No. 3, 423-429, (1983).

]

[
[5] Pitts, W.P., Twenty-Second Symposium (International) on Combustion, The Combustion In-
stitute, 809-816, (1988).

[6] Lee, B.J. and Chung, S.H., Combustion and Flame 109:163-172 (1997).

[7] Xu, Yuenong, Smooke, M.D., Lin, P., and Long, M.B., Combustion Science and Technology
90:289-313 (1993).

[8] Savas, O. and Gollahalli, S.R., Journal of Fluid Mechanics 165:297-318 (1986).

[9] Lee, B.J., Kim, J.S. and Chung, S.H., Twenty-Fifth Symposium (International) on Combustion,
The Combustion Institute, 1175-1181 (1994).

[10] Wichman, L.S. and Ramadan, B., Physics of Fluids 10 No. 12, 3145-3154 (1998).

[11] Buckmaster, J. and Matalon, M., Twenty-Second Symposium (International) on Combustion,
The Combustion Institute, 1527-1535 (1988).

[12] Lifidn, A. and Crespo, A., Combustion Science and Technology 14:95-117 (1976).

(13] Buckmaster, J. and Weber, R., Twenty-Sizth Symposium (International) on Combustion, The
Combustion Institute, 1143-1149 (1996).

[14] Chung S.H. and Law C.K., Combustion Science and Technology 37:21-46 (1984).
[15] Lifidn, A., Acta Astronautica 1:1007-1039 (1974).

[16] Buckmaster, J. Journal of Engineering Mathematics, 31:269-284 (1997).

[17]

17} Miiller, C.M., Breitbach, H. and Peters, N., Twenty-Fifth Symposium (International) on Com-
bustion, The Combustion Institute, 1099-1106 (1994).

[18] Daou, J. and Lifidn, A., Combustion Theory and Modelling, 2:449-477 (1998).

[19] Kaplan, C.R., Oran, E.S. and Baek, S.W., Twenty-Fifth Symposium (International) on Com-
bustion, The Combustion Institute, 1183-1189 (1994).

[20] Chung, S. H. and Lee, B.J., Combustion and Flame, 86:62-72 (1991).

13




[21] Higuera, F.J. and Lifidn, A., Journal of Fluid Mechanics 329:389-411 (1996).

[22] Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, 4th Ed., Addison-Wesley Pub-
lishing Company, Inc. (1989).

[23] Jia, X. and Bilger, R.W., Combustion Science and Technology 99:371-376 (1994).
[24] Cheatham, S. and Matalon, M., Journal of Fluid Mechanics 414:105-144 (2000).

14



oxidant

Figure 1: Geometry of the flow field.

15



i 0.566
‘ 0.534
0.502
0.470
0.438
0.406
0.373
0.341
0.309
0.277
0.245
0.213
0.180
0.148
0.116

X
Ed

e [[LTTTITTTTTITTTITT R

Figure 2: Solution contours of the oxidant and fuel mass fractions and the temperature from the
numerical model; m = 9.0, Ty = Tpo = 0.1, Xpg = 1.0, L =10, dz = dy = 0.02, N = 200,
D =4x107,and § = 5.0 (A = 40).
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Figure 3: Liftoff and flame heights versus the flow rate m for several values of D. Predictions are
from the numerical model, with Ty = Tpg = 0.1, Xpo = 1.0, L =10.0, § = 5.0, and N = 200.
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from the numerical model, with T; = Tpo = 0.1, Xoo = 1.0, L =10.0, § =5.0, and N = 200.
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Figure 5: Temperature contours from the numerical model for m = 6,8, and 10, with
Ty =Too=0.1, Xoo=1.0, L=10.0, D=4x 10" and § = 5.0 (A = 40), and N = 200.
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Figure 6: Contours of the reaction rate, for m = 6, 8, and 10, with Ty = Tpo = 0.1, Xoo = 1.0,
L =100, D=4x10" and § = 5.0 (A = 40), and N = 200.
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Figure 7: Solution contours of the oxidant and fuel mass fractions and the temperature; m = 9.0,
Ty =Too=0.1, Xoo=1.0, €=0.072 (§=5), A=1.0,L =10, dz =dy=0.02, and N = 200.
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Figure 8: Flame shapes for several values of m, with Ty = Top = 0.1, Xpo = 2.0, L = 10.0,
A =2.0, N =200.
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Figure 10: Predictions of liftoff and flame heights from the asymptotic theory, with T; = Tpo = 0.1,
Xoo=1.0, L =10.0, and N = 200.
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Figure 11: Liftoff and flame heights versus m with A = 40.0, for Ty = Tpe = 0.1, Xpo = 1.0,
L =10.0, N = 200, and several values of D, 6.
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